A survey of organ and effective doses for seven dental cone beam computed tomography (CBCT) units.

Theodorakou C,1,2 Pauwels R,3 Walker A,1 Bogaerts R,1 Howard K1, Jacobs R3, Horner K2, The SEDENTEXCT Project Consortium5

1North Western Medical Physics, The Christie NHS Foundation Trust, Manchester, UK; 2School of Dentistry, University of Manchester, UK; 3Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Belgium; 4Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium 5Listing of partners on www.sedentexct.eu

Introduction

Cone Beam Computed Tomography (CBCT) imaging is accomplished by using a rotating gantry to which an x-ray source and an imaging detector are attached. A pyramidal or cone-shaped x-ray beam is used instead of the conventional CT fan beam. The x-ray source and the detector perform a full or half rotation around a point fixed within the centre of region of interest. During the rotation multiple planar projections of the field of view are acquired and reconstructed.

CBCT offers three-dimensional images with high level of accuracy. Dental CBCT has been associated with higher radiation risk compared to conventional dental imaging and lower radiation risk compared to multi-slice CT (MSCT). Several studies have reported on radiation doses for dental CBCT examinations [1-4].

Exposure factors as used for standard patients by departments were calculated using the ICRP 103 tissue equivalent anthropomorphic phantoms. There is a wide variation in terms of methodology, type of phantoms, number of TLDs and positioning. The effect of positioning and number of TLDs on the accuracy of the effective dose has not been assessed. The effective doses for dento-alveolar examinations ranged from 34 μSv to 652 μSv. For craniofacial examinations, the effective doses ranged from 30 μSv to 1073 μSv.

Aim

The aim of this study was to measure the adult organ and effective doses for seven dental CBCT units.

Methods and Materials

Radiation absorbed doses were measured using two adult ART head and neck phantoms (slices 1-10) and two types of TLDs (TLD-100 and TLD100-H). The TLD uncertainty was < 10%. On average, 150 TLDs were uniformly positioned in two phantoms in order to measure the absorbed doses to the brain (~30), red bone marrow (~30), bone surface (~30), salivary glands (~20), skin (~30) and thyroid (~10). Correction factors were applied to the skin, bone surface and red bone marrow doses for each phantom slice to account for the fraction of the total mass of the specified organ in the phantom. The effective doses were calculated using the ICRP 103 tissue equivalent factors. Measurements were done on seven dental CBCTs: a) Galileos (Sirona), Promax 3D (Planmeca), NewTom VG (AFP Imaging), i-CAT Next Generation (i-CAT), Picasso Trio (E-woo), Scanora 3D (Soredex) and Kodak 9000 (Kodak).

Table 1. Exposure factors* and clinical indications used in this study

<table>
<thead>
<tr>
<th>KV</th>
<th>mAs</th>
<th>Voxel size (cm)</th>
<th>Field of View (cm)</th>
<th>Clinical Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galileos 85</td>
<td>28</td>
<td>0.3</td>
<td>15</td>
<td>Dento-alveolar</td>
</tr>
<tr>
<td>Promax 3D 84</td>
<td>114</td>
<td>0.16</td>
<td>8</td>
<td>Mandible + half maxilla</td>
</tr>
<tr>
<td>Picasso Trio 85</td>
<td>53</td>
<td>0.2</td>
<td>12 Ø x 7</td>
<td>Mandible</td>
</tr>
<tr>
<td>Kodak 9000 70</td>
<td>105</td>
<td>0.076</td>
<td>5 Ø x 3.7</td>
<td>Mandible Front</td>
</tr>
<tr>
<td>NewTom VG 110</td>
<td>10</td>
<td>0.3</td>
<td>15 Ø</td>
<td>Dento-alveolar</td>
</tr>
<tr>
<td>i-CAT Next 120</td>
<td>19</td>
<td>0.4</td>
<td>16 Ø x 6</td>
<td>Mandible</td>
</tr>
<tr>
<td>Scanora 3D 85</td>
<td>30</td>
<td>0.2</td>
<td>10 Ø x 7.5</td>
<td>Mandible, Maxilla, Dento-alveolar</td>
</tr>
</tbody>
</table>

*Exposure factors as used for standard patients by departments

The majority of the studies have used thermoluminescent dosimeters (TLD) in tissue-equivalent anthropomorphic phantoms. There is a wide variation in terms of methodology, type of phantoms, number of TLDs and positioning. The effect of positioning and number of TLDs on the accuracy of the effective dose has not been assessed. The effective doses for dento-alveolar examinations ranged from 34 μSv to 652 μSv. For craniofacial examinations, the effective doses ranged from 30 μSv to 1073 μSv.

Results

Figure 1 shows the average, minimum and maximum absorbed organ doses to the brain, salivary glands, thyroid, skin, bone surface and red bone marrow. The absorbed doses to the skin, bone surface and red bone marrow were rather small due to the fact that only a fraction of the total mass of these organs is located in the head and neck region of the phantom. Figure 1 shows that there is a wide variation in the absorbed doses for all the organs. This is due to a) clinical area being imaged and b) the wide range of exposure factors set by the manufacturers and clinical staff, as shown in table 1.

The salivary glands, thyroid gland and the red bone marrow are the three organs that contribute the most to the effective doses for all the CBCT units and clinical examinations. Although the dose to the red bone marrow is much smaller than the salivary and thyroid glands doses, its contribution to the effective dose is significant due to its high radiosensitivity.

Figure 2 shows that there is a wide range of effective doses even for the same clinical indication with an average value of 43 μSv. This is mainly due to the exposure factors set by the manufacturers and clinical staff. The highest and lowest effective doses correspond to the Promax 3D and i-CAT Next Generation units. Galileos, Picasso Trio and NewTom VG use relatively high FOVs resulting in effective doses greater than 50 μSv. It should be noted that the exposure factors used for this study were those selected by the users to give acceptable image quality for a standard patient.

This study reported and compared organ and effective doses for seven dental CBCT units. In addition, this study confirmed that CBCT radiation doses are one-twentieth of published MSCT radiation doses [4] but four times higher than the average panoramic dose (1.0±0.5 μSv) published by the Health Protection (UK) [5].

References


The research leading to these results has received funding from the European Atomic Energy Community’s Seventh Framework programme FP7/2007-2011 under grant agreement no. 212246 (SEDENTEXCT: Safety and Efficacy of a New and Emerging Dental X-ray Modality). Contact: Dr Christie Theodorakou, christie.theodorakou@physics.cr.man.ac.uk